Studying the effect of drought stress and arbuscular mycorrhizal fungi on some morphological and physiological traits of Artemisia dracunculus

Document Type : Original Article

Authors

1 Assistant Professor, Research Institute of Forest and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

2 Assistant Professor, Soil Conservation and Watershed Management, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Kerman, Iran.

3 Assistant Professor, Forest and Rangeland Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Kerman, Iran.

4 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University, Rafsanjan, Iran.

Abstract

Objective
One of the limiting environmental factors in the vegetation in different regions of Iran is water stress, which can be mitigated by suitable agricultural methods such as the use of biological fertilizers. 
Materials and Methods
The effect of arbuscular mycorrhizal fungi (AMF) and drought stress on the growth of tarragon was investigated as a factorial experiment in the form of a completely randomized design. The tested treatments included a mixture of two species of mycorrhizal fungi, Rhizophagus irregularis and Rhizophagus intraradices, and drought stress at three levels. Some morphological and physiological traits of the plant were investigated.
Results
The results showed that vegetative characteristics decreased significantly with increasing dryness in treatments where mycorrhizal fungi were not inoculated. However, inoculation with mycorrhizal fungi significantly increased the vegetative growth indices of tarragon under drought stress conditions in comparison with non-inoculated plants. The effects of mycorrhiza and drought on the relative water content (RWC) and chlorophyll content were significant. With increasing drought stress, RWC and chlorophyll content decreased, but the inoculation of the fungi caused a significant increase in RWC and chlorophyll. The effect of drought stress and inoculation with fungi on the phosphorus and potassium content of leaves was significant, but the interaction effect of drought stress and inoculation with fungi on the phosphorus and potassium content was not significant.
Conclusion
The general conclusion of this research was that the use of mycorrhizal fungi increases resistance to drought stress in the plant, and leveraging the capability of AMF for the large-scale cultivation of medicinal plants is a breakthrough.

Keywords


Aghaei, K., Barzali, M., Jafarian, V., & Shekari, F. (2017). Some physiological and biochemical responses of tarragon plant to drought stress. Journal of Plant Process and Function Iranin Society of Plant Physiology, 6(19), 15-24. [In Persian] http://dorl.net/dor/20.1001.1.23222727.1396.6.19.13.1
Alsunuse, B. T. B., Al-Ani, M. A. M., Faituri, M., Ashilenje, D. S., Alawami, A. A., & Stahl, P. D. (2021). Effects of arbuscular mycorrhizal fungi on growth and phosphorus uptake of maize (Zea mays L.) at different levels of soil phosphorus and soil moisture. Journal of Dryland Agriculture, 7(3), 22-33. https://doi.org/10.5897/JODA2020.0063
Alves de Assis, R. M. A., Carneiro, J. J., Medeiros, A. P. R., de Carvalho, A. A., da Cunha Honorato, A., Carneiro, M. A. C., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2020). Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Industrial Crops and Products, 158, 10-16. https://doi.org/10.1016/j.indcrop.2020.112981
Anjam, H. R., Hosseinifarahi, M., & Abdipour, M. (2023). The application of arbuscular mycorrhizal fungi and putrescine on the vegetative characteristics, seed yield and essential oil of the medicinal plant cumin (Cuminum cyminum) under drought stress. Sustainable Agricultural Science Research, 3(3), 28-47. [In Persian]. https://doi.org/10.30495/sarj.2023.2001810.1166
Arpanahi, A. A., Feizian, M., Mehdipourian, G., & Khojasteh, D. N. (2020). Arbuscular mycorrhizal fungi inoculation improve essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. European Journal of Soil Biology, 100, 103217. https://doi.org/10.1016/j.ejsobi.2020.103217
Aslani, Z., Hasani, A., Rasouli Sadeghiani, M. H., Sefidkon, F., & Barin, M. (2011). Effect of two species of arbuscular mycorrhizal fungi (Glomus mosseae and Glomus intraradices) on growth, chlorophyll levels and phosphorus absorption in basil plant (Ocimum basilicum L.) under drought stress conditions. Iranian Journal of Medicinal and Aromatic Plants Research, 27(3), 471-486. [In Persian]. http://dx.doi.org/10.22092/ijmapr.2011.6388
 Babaei, Kh., Moghaddam, M., Farhadi, N. & Ghasemi Pirbalouti, A. (2021). Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Scientia Horticulturae, 284(27),110-116. https://doi.org/10.1016/j.scienta.2021.110116
Bandurska, H. (2022). Drought stress responses: Coping strategy and resistance. Plants (Basel), 11(7), 922. https://doi.org/10.3390/plants11070922
Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1-15. https://doi.org/10.3389/fpls.2019.01068
Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben-Laouane, R., Douira, A., El Modafar, C., Mitsui, T., Wahbi, S., & Meddich, A. (2020). Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in)organic adjustments. Plants, 9(1), 80. https://doi.org/10.3390/plants9010080
Chapman, B., Jones, D., & Jung, R. F. (1983). Processes controlling metal ion attenuation in acid mine drainage streams. Geochimica et Cosmochimica Acta, 47(11), 1957-1973. https://doi.org/10.1016/0016-7037(83)90213-2
Chaves, M. M., Costa, J. M., & Saibo, N. J. M. (2011). Recent advances in photosynthesis under drought and salinity. Advances in Botanical Research, 57, 49-104. https://doi.org/10.1016/B978-0-12-387692-8.00003-5
Cheng, H. Q., Giri, B., Wu, Q. S., Ying-Ning, Z., & Kuca, K. (2022). Arbuscular mycorrhizal fungi mitigate drought stress in Citrus by modulating root microenvironment. Archives of Agronomy and Soil Science, 68(9), 1217-1228. https://doi.org/10.1080/03650340.2021.1878497
Dadashi, D., Norouzi, M., Sabokdast, M., & Sarikhani, M. R. (2023). The effect of inoculation of growth-promoting bacteria Enterobacter sp. S16-3 on the morpho-physiological traits of rapeseed under drought stress. Journal of Crop Breeding, 15(46), 145-155. [In Persian]. https://doi.org/10.61186/jcb.15.46.145
Etesami, H., Jeong, B. R., & Glick, B. R. (2021). Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plant. Frontiers in Plant Science, 12, 699618. https://doi.org/10.3389/fpls.2021.699618
Franco, J. A. (2018). Root development under drought stress. Technology and Knowl. Transf. E-Bull, 2(6), 1-3. http://hdl.handle.net/10317/2075
Gerdemann, J., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the Br. Mycological Society, 46(2), 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0
Ghonjalipour Goshki, M., Abdollahi, F., & Sadeghi Lari, A. (2021). Effect of mycorrhiza fertilizer on physiological traits and economical yield of lettuce (Lactuca sativa L.) under water stress conditions. Journal of Vegetable Sciences, 5(9), 177-195. [In Persian] https://doi.org/10.22034/iuvs.2021.531386.1164
Golubkina, N., Logvinenko, L., Novitsky, M., & Zamana, S. (2020). Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants, 9(3), 375. https://doi.org/10.3390/plants9030375
Goshasbi, F., Heidari, M., Sabbagh, S. K., & Makarian, H. (2021). Effect of water deficit stress and bio and non-bio-fertilizers on flowering branches yield, photosynthetic pigments and concentration of macro elements in thyme (Thymus vulgaris L.). Iranian Journal of Field Crop Science, 52(2), 157-172. [In Persian] https://doi.org/10.22059/IJFCS.2020.293187.654660
Haghir Ebrahimabadi, A., Hatami, M., Karimzadeh Asl, K., & Ghorbanpour, M. (2018). Effect of mycorrhizal fungi and biophosphor fertilizer on growth features, yield and yield components, and essential oil constituents in Cuminum cyminum L. Journal of Medicinal Plants, 17(66), 74-90. [In Persian] https://doi.org/20.1001.1.2717204.2018.17.66.3.1
Hatami, N., Bazgir, E., Sedaghati, E., & Darvishnia, M. (2020). The symbiosis study of arbuscular mycorrhizal fungi with some annual herbaceous plants and morphological identification of dominant species of these fungi in Kerman Province. Biological Journal of Microorganism, 9(33). https://doi.org/10.22108/bjm.2020.120148.1242
Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Plant Nutrition, 168(4), 541-549. https://doi.org/10.1002/jpln.200420516
Hu, Y., Xie, W., & Chen, B. (2020). Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chemical and Biological Technologies in Agriculture, 7(20), 1-14. https://doi.org/10.1186/s40538-020-00186-4
Jacob, H., & Clark, G. (2002). Methods of Soil Analysis. Part IV Physical Method. Soil Science Inc., Madison, Wisconsin, USA. pp 1692.
Jajoo, A., & Mathur, S. (2021). Role of arbuscular mycorrhizal fungi as an underground savior for protecting plants from abiotic stresses. Physiology and Molecular Biology of Plants, 27, 2589-2603. https://doi.org/10.1007/s12298-021-01091-2
Khalid, K. A. (2006). Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). International Agrophysics, 20, 289-296.
Krüger, M., Stockinger, H., Krüger, C. & Schüßler, A. (2009). DNA‐based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist, 183, 212-223. https://doi.org/10.1111/j.1469-8137.2009.02835.x
Lamian, A., Ladan Moghadam, A., & Mehrafarin, A. (2015). Changes of morpho-physiological traits, essential oil and methyl chavicol content of tarragon (Artemisia dracunculus) to mycorrhiza (Glomus intraradices) inoculation and salinity stress. Journal of Medicinal Plants, 14(56), 64-77. [In Persian] http://dorl.net/dor/20.1001.1.2717204.2015.14.56.12.9
Lamian, A., Naghdibadi, H., Mehrafarin, A., & Seifsahandi, M. (2017). Changes in essential oil and morpho-physiological traits of tarragon (Artemisia dracunculus L.) in responses to arbuscular mycorrhizal fungus, AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) inoculation under salinity. Acta Agriculturae Slovenica, 109(2), 215-227. https://doi.org/10.14720/aas.2017.109.2.06
Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94. https://doi.org/10.3390%2Fantiox8040094
Lotfi, M., Abbaszadeh, B., & Mirza, M. (2014). The effect of drought stress on morphology, proline content and soluble carbohydrates of tarragon (Artemisia dracunculus L.). Iranian Journal of Medicinal and Aromatic Plants, 30(1), 19-29. [In Persian] https://doi.org/10.22092/ijmapr.2014.5266
Mahajan, M., Kuiry, R., & Pal, P. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18(6), 100255. https://doi.org/10.1016/j.jarmap.2020.100255
Mazaraie, A., Sirousmehr, A. R., & Babaei, Z. (2017). Effect of mycorrhizal fungi on some morphological and physiological characteristics of milk thistle (Silybum marianum (L.) Gaertn.) under drought stress. Iranian Journal of Medicinal and Aromatic Plants, 33(4), 620-635. [In Persian] https://doi.org/10.22092/ijmapr.2017.107860.1877
Mehdikhani Moghadam, E. (2010). Important diseases of medicinal plants. Mashhad University, P: 292. [In Persian]
Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Plant Biology, 12(4), 563-569. https://doi.org/10.1111/j.1438-8677.2009.00308.x
Moghadasan, S., Safipour Afshar, A., & Saeid Nematpour, F. (2016). The role of mycorrhiza in drought tolerance of marigold (Calendula officinalis L.). Journal of Crop Ecophysiology, 9(4), 521-532. [In Persian] https://journals.iau.ir/article_518790_61526306f92517aecdfb9c8b5770411f.pdf
Mumivand, H., Ebrahimi, A., Morshedloo, M. R., & Shayganfar, A. (2021). Water deficit stress changes in drug yield, antioxidant enzymes activity and essential oil quality and quantity of tarragon (Artemisia dracunculus L.). Industrial Crops & Products, 164, 1-14. https://doi.org/10.1016/j.indcrop.2021.11338
Nabizadeh, E., Haghshenas, M., & Ahmadi, K. (2023). The effect of mycorrhizal fungus (Piriformospora indica) on the morphological, physiological, and biochemical traits of the medicinal plant Stevia (Stevia rebaudiana) under drought stress. Journal of Horticultural Science, 37(2), 453-465. [In Persian] https://doi.org/10.22067/jhs.2022.75337.1173
Nadiu, T., & Naraly, A. (2001). Screening of drought tolerance in green gram (Vigna radiate L. Wilczeek) genotypes under reducing soil moisture. Indian Journal of Plant Physiology, 6(2), 197-201. https://indianjournals.com/ijor.aspx?target=ijor:ijpp&volume=6&issue=2&article=017&type=pdf
Negahban, V., Karimian, A. K., & Fayaz, F. (2020). The coexistence of mycorrhizal fungus on the Catharanthus roseus medicinal plant under the influence of drought stress. Journal of Medicinal Plants Biotechnology, 6(1), 14-26. [In Persian] https://jmpb.znu.ac.ir/article_241910.html
Oehl, F., Jansa, J., de Souza, F. A., & da Silva, G. A. (2011). Cetraspora helvetica, a new ornamented species in the Glomeromycetes from Swiss agricultural fields. Mycotaxon, 114(1), 71-84. https://doi.org/10.5248/114.71
Oliveira, T. C., Cabral, J. S. R., Santana, L. R., Tavares, G. G., Santos, L. D. S., Paim, T. P., Muller, C., Guimaraes Silva, F., Costa, A. C., Souchie, E. L., & Mendes, G. C. (2022). The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Scientific Reports, 12, 9044. https://doi.org/10.1038/s41598-022-13059-7
Ortiz, N., Armada, E., Duque, E., Roldan, A., & Azcon, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. https://doi.org/10.1016/j.jplph.2014.08.019
Philips, J. M., & Hyman, D. S. (1970). Improved procedures clearing root and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Mycological Research, 55(1), 158-161. https://doi.org/10.1016/s0007-1536(70)80110-3
Rahimi, A., Dovlati, B., & Amirnia, R. (2020). Saied Heydarzade. Effect of application of mycorrhizal fungus and Azotobacter on physiological characteristics of Trigonella foenum-graecum L. under water stress conditions. Iranian Journal of Plant Biology, 11(4), 1-18. https://doi.org/10.22108/ijpb.2019.116384.1149
Ritchie, S. W., & Nguyen, H. T. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30, 105-111. https://doi.org/10.2135/cropsci1990.0011183x003000010025x
Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: Causes, consequences, and tolerance. In Drought Stress Tolerance in Plants (pp. 1-16). https://doi.org/10.1007/978-3-319-28899-4_1
Sanayei, S., Barmaki, M., Ebadi Khazine Gadim, A., & Torabi Giglou, M. (2020). Effect of drought stress and inoculation of mycorrhizal fungi and Pseudomonas spp. on some morpho-physiological characteristics of Roselle (Hibiscus sabdariffa L.). Agricultural Science and Sustainable Production, 30(2), 71-89. [In Persian]. https://dorl.net/dor/20.1001.1.24764310.1399.30.2.5.8
Sanayei, S., Barmaki, M., Ebadi Khazine Gadim, A., & Torabi Giglou, M. (2020). Effect of drought stress and inoculation of mycorrhizal fungi and Pseudomonas spp. on some morpho-physiological characteristics of Roselle (Hibiscus sabdariffa L.). Journal of Agricultural Science and Sustainable Production, 30(2), 71-89. [In Persian]. https://dorl.net/dor/20.1001.1.24764310.1399.30.2.5.8
Schenck, N. C., & Perez, Y. (1990). Manual for the identification of VA mycorrhizal fungi. Synergistic Publications Gainesville, Florida, USA.
Sedaghati, E., Ahmadzadeh, M., Sabri-Rise, R., Rahimi, A., Hatami, N., & Mohammadi Mirik, A. A. (2021). The effect of application of arbuscular mycorrhizal fungi with some microorganisms and chemical compounds on the antioxidant enzymes activity and phenolic compounds of corn under drought stress. Iranian Journal of Plant Biology, 13(48), 53-76. [In Persian] https://ijpb.ui.ac.ir/article_26392.html
Selahvarzi, Y., & Kamali, M. (2022). Investigation of drought resistance of tarragon (Artemisia dracunculus L.) under different levels of titanium nanoparticles. Environmental Stresses in Crop Sciences, 15(1), 173-184. [In Persian] https://doi.org/10.22077/escs.2020.3571.1876
Sonar, B. A., Kamble, V. R., & Chavan, P. D. (2013). Native AM fungal colonization in three Hibiscus species under NaCl induced salinity. Journal of Pharmaceutical and Biological Sciences, 5(6), 7-13.
Song, H. (2005). Effects of VAM on host plant in the condition of drought stress and its mechanisms. Electronic Journal of Biology, 1(3), 44-48.
Verma, P., Saxena, R., & Tomar, R. S. (2016). Rhizobacteria: A promising tool for drought tolerance in crop plants. In Proceedings of International Conference on Recent Advances in Biotechnology (pp. 116-125). https://www.researchgate.net/publication/301683349_Rhizobacteria_A_Promising_Tool_for_Drought_Tolerance_in_Crop_Plants
Walker, C. (1999). Methods for culturing and isolating arbuscular mycorrhizal fungi. Mycorrhiza News, 11(2), 2-4.
Wu, Q. S., Xia, R. X., & Zou, Y. N. (2008). Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 44(1), 122-128. https://doi.org/10.1016/j.ejsobi.2007.10.001
Zare Hassanabadi, M., Dashti, M., & Akhondi, M. (2020). The effect of two species of arbuscular mycorrhiza fungi on the activity of antioxidant enzymes and morphophysiological characteristics of Mentha pulegium L. in drought stress. Technology of Medicinal and Aromatic Plants of Iran, 2(2), 83-99. [In Persian] https://doi.org/10.22092/MPT.2020.127803.1049
Zhou, R., Yu, X., Ottosen, C. O., Rosenqvist, E., Zhao, L., Wang, Y., & Wu, Z. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17(24), 1-13. https://doi.org/10.1186/s12870-017-0974-x