Biochemical changes and activity of some ROS–scavenging enzymes in response to salt stress in quinoa

Document Type : Original Article

Authors

1 Associate professor, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Assistant professor, Department of Arid Land and Desert Management, School of Natural Resources and Desert Studies, Yazd University, Yazd, Iran.

3 PhD, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

Abstract

Objective
Quinoa (Chenopodium quinoa) is a halophyte that can survive in saline conditions. In this study, some physiological and biochemical responses of a commercial and widely used variety of quinoa to different levels of seawater salinity stress were studied and new information is provided to reduce the negative effects of salinity stress on growth and functional characteristics and to use this information in breeding programs of this plant.
Materials and Methods
In order to investigate accumulation of some osmolytes (glycine betaine and proline), the amount of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and the activity of some antioxidant enzymes involved in salt stress, Titicaca genotype was cultivated under two salinity levels 6.9 dSm-1 and 13.8 dSm-1 along with the control in four repetitions. The experiment was a factorial experiment under a completely randomized design. After applying the salinity treatment, leaf samples were prepared at intervals of six hours to eight days.
Results
According to the results, hydrogen peroxide accumulation at the 13.8 dSm-1 salinity level is much higher than the 6.9 dSm-1 salinity level (P value≤0.001). Following the increase of superoxide and ROS production, the amount of lipid peroxidation also increased followed by an increase in malondialdehyde index in both salinity (P value≤0.001).
Conclusion
The results showed that quinoa can prevent oxidative stress and damage to the plant under salt stress conditions by increasing the accumulation of osmolytes and the activity of antioxidant enzymes. Quinoa was able to cope with the stress by activating biochemical and enzymatic responses, and by establishing cell homeostasis, it can prevent further damage from salinity stress.

Keywords


Alandia, G., Rodriguez, J. P., Jacobsen, S. E., Bazile, D., & Condori, B. (2020). Global expansion of quinoa and challenges for the Andean region. Global Food Security, 26, 100429. https://doi.org/10.1016/j.gfs.2020.100429
Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology, 50(1), 601-639. https://doi.org/10.1146/annurev.arplant.50.1.601
Ashraf, M. J. B. A. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
Bromham, L. (2015). Macroevolutionary patterns of salt tolerance in angiosperms. Annals of Botany, 115(3), 333-341. https://doi.org/10.1093/aob/mcu229
Chisari, M., Barbagallo, R. N., & Spagna, G. (2007). Characterization of polyphenol oxidase and peroxidase and influence on browning of cold stored strawberry fruit. Journal of Agricultural and Food Chemistry, 55, 3469-347.  https://doi.org/10.1021/jf063402k
Cramer, G. R. (2002). Response of absisic acid mutant of Arabidopsis to salinity. Functional Plant Biology, 29, 561-567. https://doi.org/10.1071/PP01132
De Oliveira Oliveira Junkes, C. F., Neis, F. A., de Costa, F., Yendo, A. C. A., & Fett-Neto, A. G. (2019). Environmental factors impacting bioactive metabolite accumulation in brazilian medicinal plants. Brazilian Medicinal Plants, 11, 109-134.
Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experiment Botany, 55(396), 307-319. https://doi.org/10.1093/jxb/erh003
Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: adaptations in halophytes. Annals of Botany, 115(3), 327-331. https://doi.org/10.1093/aob/mcu267
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
Gniazdowska, A., Krasuska U., & Bogatek, R. (2010). Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta, 232(6), 1397-1407. https://doi.org/10.1007/s00425-010-1262-2
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
Golden, T. R., Hinerfeld, D. A., & Melov, S. (2002). Oxidative stress and aging: beyond correlation. Aging Cell, 1(2), 117-123. https://doi.org/10.1046/j.1474-9728.2002.00015.x
Greive, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary-amino compounds. Plant Soil, 70, 303-307. https://doi.org/10.1007/BF02374789
Hamanaka, R. B., & Chandel, N. S. (2009). Mitochondrial reactive oxygen species regulate hypoxic signaling. Current Opinion in Cell Biology, 21(6), 894-899. https://doi.org/10.1016/j.ceb.2009.08.005
Heidarvand, L., Maali Amiri, R., Naghavi, M. R., Farayedi, Y., Sadeghzadeh, B., & Alizadeh, K. H. (2011). Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russian Journal of Plant Physiology, 58(1), 157-163. https://doi.org/10.1134/S1021443711010080
Hosseini, S. S., Ramezanpour, S. S., Soltanloo, H., & Seifati, S. E. (2023). RNA‑seq analysis and reconstruction of gene networks involved in response to salinity stress in quinoa (cv.Titicaca). Scientific Reports, 13, 7308. https://doi.org/10.1038/s41598-023-34534-9
Hu, Y., Ge, Y., Zhang, C., Ju, T., & Cheng, W. (2009). Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regulation, 59, 51-61. https://doi.org/10.1007/s10725-009-9387-7
Jacobsen, S. E., Mujica, A., & Jensen, C. R. (2003). The Resistance of Quinoa (Chenopodium quinoa Willd.) to Adverse Abiotic Factors. Food Reviews International, 19(12), 99-109. https://doi.org/10.1081/FRI-120018872
Jacobsen, S. E. (2017). The scope for adaptation of quinoa in Northern Latitudes of Europe. Journal of Agronomy and Crop Science203(6), 603-613. https://doi.org/10.1111/jac.12228
Jaleel, C. A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R., & Panneerselvam, R. (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedling under salt stress. South African Journal of Botany, 73(2), 190-195. https://doi.org/10.1016/j.sajb.2006.11.001
Katsuhara, M., Otsuka, T., & Ezaki, B. (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sciences, 169(2), 369-373. https://doi.org/10.1016/j.plantsci.2005.03.030
Khalofah, A., Migdadi, H., & El-Harty, E. (2021). Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa willd) to exogenous selenium application. Plants, 10(4), 719. https://doi.org/10.3390/plants10040719
Kiamoghadam, M. R. & Bagherieg-Najjar, M. B. (2012). Analysis of some physiological and biochemical parameters in AtrecQl4A mutant plants under salinity stress. Journal of Plant Production Research, 16, 115-132. https://dorl.net/dor/20.1001.1.23222050.1388.16.1.9.4
Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138(2), 882-897. https://doi.org/10.1104/pp.105.062257
Maehly, A. C., & Chance, B. (1955). Assay of catalases and peroxidases. Methods in enzymology, 2, 764-775. https://doi.org/10.1002/9780470110171.ch14
Mckersie, D. B., & Leshem, Y. (1994). Stress and stress coping in cultivated plants. Biologia Plantarum, 37, 380. https://doi.org/10.1007/978-94-017-3093-8
Meloni, D. A., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reeducates in cotton under salt stress. Brazilian Journal of Plant Physiology, 15(2), 12-21. https://doi.org/10.1016/S0098-8472(02)00058-8
Meng, X., Li, B., Liu, J., & Tian, S. (2008). Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and post-harvest coating during storage. Food Chemistry, 106, 501-508. https://doi.org/10.1016/j.foodchem.2007.06.012
Minami, M., & Yoshikawa, H. (1979). A simplified assay method of superoxide dismutase activity for clinical use. Clinica Chimica Acta, 92(3), 337-342. https://doi.org/10.1016/0009-8981(79)90211-0
Mirmohammadi meybodi, A. M., & Ghareyazi, B. (2002). Physiological and genetic aspects of plant salinity stress. Isfahan University of Technology. Iran [In Persian]
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043. https://doi.org/10.1093/jxb/erj100
Nayyar, H. (2003). Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany, 50(3), 253-264. https://doi.org/10.1016/S0098-8472(03)00038-8
Ngo, T., & Lenhoff, M. (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analytical Biochemistry, 105, 389-397. https://doi.org/10.1016/0003-2697(80)90475-3
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
Olmos, E., Jimenez-Perez, B., Roman-Garcia, I., & Fernandez-Garcia, N. (2024). Salt-tolerance mechanisms in quinoa: Is glycinebetaine the missing piece of the puzzle? Plant Physiology and Biochemistry, 206, 108276. https://doi.org/10.1016/j.plaphy.2023.108276
Peltzer, D., Dreyer, E., & Polle, A. (2002). Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumeiPlant Physiology and Biochemistry, 40(2), 141-150. https://doi.org/10.1016/S0981-9428(01)01352-3
Polle, A. (2001). Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology, 126(1), 445-462. https://doi.org/10.1104/pp.126.1.445
Pradedova, E. V., Isheeva, O. D., & Salyaev, R. K. (2011). Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants. Russian Journal of Plant Physiology, 58(2), 210-217. https://doi.org/10.1113/expphysiol.2009.050526
Rios-Gonzalez, K., Erdei, L., & Lips, S. H. (2002). The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Science, 162(6), 923-930. https://doi.org/10.1016/S0168-9452(02)00040-7
Reguera, M., Conesa, C.M., Gil-Gómez, A., Haros, C.M., Pérez-Casas, M.Á., Briones-Labarca, V., Bolaños, L., Bonilla, I., Álvarez, R., Pinto, K., & Mujica, Á. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. Peer Journal, 6, e4442.
Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86(3), 407-421.
Shen, B., Jensen, R. G., & Bohnert, H. J. (1997). Mannitol protects against oxidation by hydroxyl radicals. Plant Physiology, 115(2), 527-532. https://doi.org/10.1104/pp.115.2.527
Sindhu, R., & Khatkar, B. (2019). Pseudocereals: nutritional composition, functional properties, and food applications. In: Food Bioactives. New Jersey: Apple Academic Press, 129–147
Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2004). Effects of different irradiance levels on some antioxidant enzymes and on malondealdehyde content during rewatering in olive tree. Plant Science, 166(2), 293-302. https://doi.org/10.1016/j.plantsci.2003.09.018
Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., & Thomas, G. (2003). Scavenging of reactive oxygen species in NaCl-stressed rice (Oriza sativa L.) differential response in salt tolerant and sensitive varieties. Plant Science, 165, 1411-1418. https://doi.org/10.1016/j.plantsci.2003.08.005
Vanderauwera, S., Suzuki, N., Miller, G., Van De Cotte, B., Morsa, S., Ravanat, J. L., Hegie, A., Triantaphylides, C., Shulaev, V., Van Montagu, M. C., & Van Breusegem, F. (2011). Extranuclear protection of chromosomal DNA from oxidative stress. Proceedings of the National Academy of Sciences, 108(4), 1711-1716. https://doi.org/10.1073/pnas.1018359108
Wang, X., Bai, J., Wang, W., Zhang, G., Yin, S., & Wang, D. (2021). A comparative metabolomics analysis of the halophyte Suaeda salsa and Salicornia europaea. Environmental Geochemistry and Health, 43(3), 1109–1122. https://doi.org/10.1007/s10653-020-00569-4